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ABSTRACT

Accurately monitoring cognitive load in real time is critical for
Brain-Computer Interfaces (BCIs) that adapt to user engagement
and support personalized learning. Electroencephalography (EEG)
offers a non-invasive, cost-effective modality for capturing neural
activity, though traditional methods often struggle with cross-subject
variability and task-specific preprocessing. We propose leveraging
Brain Foundation Models (BFMs), large pre-trained neural net-
works, to extract generalizable EEG features for cognitive load
estimation. We adapt BFMs for long-term EEG monitoring and
show that fine-tuning a small subset of layers yields improved accu-
racy over the state-of-the-art. Despite their scale, BFMs allow for
real-time inference with a longer context window. To address often-
overlooked interpretability challenges, we apply Partition SHAP
(SHapley Additive exPlanations) to quantify feature importance.
Our findings reveal consistent emphasis on prefrontal regions linked
to cognitive control, while longitudinal trends suggest learning pro-
gression. These results position BFMs as efficient and interpretable
tools for continuous cognitive load monitoring in real-world BCIs.

Index Terms— Brain Foundation Models, Explainability, EEG,
Brain Computer Interfaces, Cognitive Load

1. INTRODUCTION

Cognitive load estimation plays a pivotal role in enabling intelli-
gent systems that adapt to users’ mental states. Applications include
adaptive learning systems that adjust instructional content based on
cognitive state; personalized delivery platforms that respond to user
engagement; and neuroadaptive games that modulate difficulty or
pacing in real time. These systems show promise towards enhancing
user experience, improving learning outcomes, and supporting men-
tal well-being through passive, brain-informed adaptation. In this
regard, Brain-Computer Interfaces (BCIs) offer a promising avenue
for passive cognitive load monitoring by leveraging physiological
signals such as Eye Gaze [1], Heart Rate [2], Electrocardiography
(ECG) [3], and Electroencephalography (EEG) [4]. Among these,
EEG stands out as a non-invasive, portable, cost-effective modality
providing direct access to neural activity.

EEG signals are inherently complex, characterized by high
dimensionality, spatio-temporal dynamics, and inter-subject vari-
ability [5, 6]. Traditional machine learning approaches rely on
handcrafted features such as power spectral density and functional
connectivity [7–9], which often require extensive preprocessing
and task-specific configurations [10]. While effective in controlled
settings, these methods struggle to generalize across tasks, users,
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and recording conditions [10, 11]. Deep learning models, includ-
ing CNNs, recurrent LSTMs, and more recently transformers, have
shown promise in learning features directly from raw or minimally
processed EEG [12–15]. Yet, these models are typically trained
for specific tasks from scratch, making them task-specific and thus
may lack flexibility and scalability. Their performance often de-
grades when applied to new users or tasks, limiting their utility in
real-world BCIs systems and cross-subject requirements.

In contrast, Brain Foundational Models (BFMs) have emerged
as a new paradigm for EEG-based BCIs. These large-scale models
are pre-trained on diverse EEG datasets via self-supervised objec-
tives toward generalizable representations of brain activity. BFMs
can be adaptable to downstream tasks with minimal fine-tuning [16–
20]. BFMs show great potential for short-duration EEG classifica-
tion tasks, but their application to continuous cognitive load monitor-
ing requiring long-term EEG modeling remains underexplored [9].
Moreover, it is crucial to ground these advanced models in estab-
lished neuroscientific cognitive theory [21]. This mandates inter-
pretable feature analyses, often missing in large-scale BFMs [22].

Herein, we investigate the use of BFMs for continuous cognitive-
load monitoring and examine key challenges in scalability, general-
ization, interpretability. To our knowledge, this is the first work to
apply BFMs to continuous cognitive-load estimation and to analyze
their behavior in a multi-day training setting. Our contributions are:

• A scalable and cross-participant pipeline for long-term
cognitive load estimation using BFM-derived features.

• A flexible group-average channel alignment for heteroge-
neous layouts, improving cross-subject generalization.

• An adaptation of Partition SHAP to interpret EEG feature
and region importance, aligned with neuroscience [23].

• A longitudinal analysis across multiple days revealing learn-
ing progression w.r.t. cognitive load and other neural markers.

We find that cognitive load decreases over time while prefrontal neu-
ral relevance increases. Our results further show that BFMs, partic-
ularly LaBraM [18], improve estimation accuracy and consistently
emphasize frontal regions linked to working memory and executive
function, supporting their use in real-world cognitive monitoring.

2. METHODS

2.1. Data Collection and EEG Preprocessing

Five consecutive data cohorts A, B, C, D, and E were collected over
the span of 3 years, each with similar but slightly modified chan-
nel configurations or hardware. Recruited participants sat on a 6
DoF chair in a Prepar3D Virtual Reality (VR)-based flight simulator,



Fig. 1: Overall pipeline of cognitive load estimation with brain foun-
dation model (BFM) in adaptive training systems.

Fig. 2: Electrodes and groupings. Green fill: part of 32-chann setup,
underline: part of 28-chann setup, purple outline: part of 26-chann.

wearing a Varjo VR3 headset with custom dry electrodes of varying
{26, 28, 32}-channel configurations (besides ground and reference).
Custom single-pin, spring-loaded EEG electrodes were developed,
gold-pinned or Ag/AgCl-coated depending on the cohort, and were
embedded in an adjustable three-plate 3D printed hardware shell.
The EEG sensors were connected to a BrainVision Active/Dry elec-
trode interfaces and a LiveAmp sampling at 500 Hz. Eye-tracking
data was also collected from the integrated Varjo VR3 headset. The
study was approved by the Microsoft Research Ethics IRB.

Most participants were inexperienced in VR or in flying and
were presented with two tasks at varying difficulty levels (created by
simulated weather conditions of wind, turbulence, visibility) [9]: ap-
proach the runway with constant course and speed or maintain con-
stant altitude, speed, and course on a level flight. The study included
30 participants total, who, over 5 consecutive days, completed 90 tri-
als, each lasting ∼ 2 minutes (shorter if simulated aircraft crashed).
Some sessions were missed due to participant no show or discarded
due to poor experimental conditions. Overall, as participants under-
went consecutive training sessions, their performance was expected
to improve. Participants were grouped into temporally defined co-
horts, collected sequentially during the study. Cohorts D and E are
considered the most stable in terms of experimental setup, reflecting
improvements to the acquisition protocol, custom EEG cap design,
and signal quality management. Hence, cohort E is reserved exclu-
sively for evaluation (see more in Section 2.5). The cohort details:

Cohort A: 2 participants, 26 channels
Cohort B: 6 participants, 26 channels
Cohort C: 6 participants, 28 or 32 channels (varied)
Cohort D: 11 participants, 32 channels
Cohort E: 5 participants, 32 channels

Prior to feature extraction, EEG signals were band-pass filtered
within [0.1 − 75] Hz, with a 60 Hz notch filter to remove electrical
noise, resampled to 200 Hz. On average, most trials were ∼100 sec
long (maxed at 2 min). We extract 90 sec from the center of each
trial, cropping or zero-padding to ensure uniformity (less than 10%
of segments were cropped/padded). Segments were then split into
16-sec windows with 50% overlap, chosen as the maximum length
that could be processed by the BFMs. The resulting EEG input is
denoted as follows, where number of windows NT = (90−16)/8+1
= 10, number of electrodes NE , and NS = 16×200 = 3200 samples:

x ∈ RNT×NE×NS

2.2. Ground-truth Labels from Adaptive Training System

In our study we make use of the comprehensive score from the Adap-
tive Training System (ATS) for Pilots [24] as the objective estimate
of cognitive load, designed for pilot training in VR flight simula-
tors. These are continuous ground truth label scores, that inte-
grate flight logs, task difficulty, participant skill, and learning rate,
aligned with the cognitive load theory: when difficulty and skill are

controlled, performance is largely determined by the cognitive effort
exerted [21]. The overall process can be seen in Fig. 1.

2.3. Feature Extraction with Brain Foundation Models

We extract features from preprocessed EEG using two recently re-
leased BFMs: LaBraM [18] and CBraMod [19]. LaBraM employs a
convolutional temporal encoder, spatio-temporal trainable positional
embeddings, and 12 transformers with self-attention. In contrast,
CBraMod combines temporal and frequency-domain encoders with
convolutional positional embeddings and 12 transformers with criss-
cross attention. Each encoder processes EEG at a fine resolution of
one second per channel. This work adapts the encoders to create em-
beddings over longer, 90-sec, multi-channel EEG. Given input x ∈
RNT×NE×NS , each encoder outputs features h ∈ RNT×NE×Nd per
electrode channel per segment, with Nd = 200 for both models and
NT = 10. Multiple 1-sec outputs within 16-sec segment were com-
pressed by averaging, matching the long-range (slower manifesta-
tion) of cognitive load during the learning task, where instantaneous
fluctuations are less informative. This yields the final feature vector
h of size 2000×NE , with NE channels varied per montage.

While BFMs may be able to handle variable electrode configu-
rations, downstream models require fixed-size features. To achieve
this, we apply spatial and temporal pooling techniques. These strate-
gies standardize feature dimensions across participants, enabling in-
terpretable and computationally efficient modeling of cognitive load.

Spatial pooling helps reduce variability across electrode config-
urations. We evaluated two strategies: (1) Group-average: Electrode
features were averaged within 9 anatomically defined regions, shown
in Fig. 2, preserving neuroscientific relevance for cognitive load esti-
mation. (2) Intersection: A single electrode per region was retained,
reducing dimensionality but potentially discarding informative sig-
nals. After spatial pooling, the features were flattened along the tem-
poral dimension, resulting in a vector of size NT ×9×Nd = 18000.

Temporal pooling was applied after spatial pooling to aggre-
gate features over time. We evaluated three strategies: (1) Global
pooling: Aggregates all time steps into a single vector. (2) Mean
pooling: Computes the average across time. (3) Mean-standard de-
viation (MeanStd): Stacks mean and standard deviation over time,
capturing central tendency and variability.

2.4. Estimating and Explaining Cognitive Load

Estimation: We estimate cognitive load as a continuous-value, simi-
lar to our ground truth, Section 2.2, with the downstream estimators:

1. Linear Layer (Linear): with an L1 sparsity constraint to
ensure optimal training given the large vector size.

2. Dense Neural Network (DNN): consisting of two layer neu-
ral network of sizes (NT × 9×Nd, NT ×Nd, 1) with batch
normalization and ReLU activation.



Table 1: Average Pearson correlation comparing BFM pipelines with spectral baselines and prior state-of-the-art deep models (left), and
spatial and temporal pooling ablation (right). Best spatial pooling per row is underlined; overall best is bolded.

(a) Feature and Estimator comparison.

Feature
Downstream Estimator layer

SVM Linear DNN LSTM
PSD 0.120 0.147 0.133 0.299

EEGNet – 0.143 0.157 –
EEGConf – 0.110 0.147 –
CBraMod 0.133 0.030 0.108 0.115
LaBraM 0.113 0.281 0.230 0.201

(b) Comparison of Spatial and Temporal pooling strategies.

Pooling dimension CBraMod LaBraM
Temporal Spatial SVM Linear DNN SVM Linear DNN

Mean
Intersec. 0.031 -0.006 0.058 -0.052 0.094 -0.006

GroupAvg 0.137 0.005 0.070 0.069 0.078 0.248

MeanStd
Intersec. 0.033 -0.054 0.056 -0.043 0.107 -0.053

GroupAvg 0.145 0.015 0.056 0.072 0.294 0.239

Global
Intersec. 0.010 0.067 0.101 0.007 0.042 -0.025

GroupAvg 0.133 0.030 0.108 0.113 0.281 0.230

3. Support Vector Machine (SVM): with a fixed Radial Basis
Function kernel (RBF) kernel.

LSTM was also used for comparison using globally pooled features,
following its success in prior work [9], but excluded from later ex-
periments due to incompatibility with the collapsed temporal axis.

Explainability: To ensure our models rely on brain-evoked fea-
tures rather than other artifacts, we assess whether the frozen en-
coder outputs align with neuroscientific expectations. While many
studies emphasize predictive accuracy, we augment our evaluation
with a novel Partition SHAP-based probe to interpret model behav-
ior [23, 25]. Partition SHAP is a model-agnostic method that ac-
counts for correlated EEG features using a domain-aware hierar-
chical tree to compute Owen values, an efficient approximation of
Shapley values. For CBraMod and LaBraM encoders we perturb
input EEG signals and measure changes in model output to assign
relevance scores to electrodes, simulating the effect of signal loss or
artifacts. These scores are aggregated per participant and model, as
we evaluate alignment with expected neural patterns.

2.5. Experiments

We formulate cognitive load estimation as a supervised regression
task, optimizing models with mean squared error (MSE) loss and
evaluating performance via Pearson correlation between predicted
and ground-truth scores. To assess cross-subject generalization, we
used nested cross-validation (CV), where test and validation partici-
pants were never seen during training, and were drawn from the final
and most stable Cohort E, as it contained five individuals who com-
pleted all 90 trials. In total, 20 CV folds were created (20 different
ways of selecting one for test and one for validation, out of five).
All model feature experiments and pooling comparisons in Sections
3.1- 3.2 used the stable Cohort D for training, with 11 participants
with a 32-channel configuration. The EEG variability experiments
and the longitudinal study in Sections 3.3- 3.4 incorporated all 25
participants from cohorts A-D for training. All experiments used the
nested-CV from Cohort E for evaluation (testing and validation).

We benchmarked against prior work using EEG power spectral
density (PSD) features across five frequency bands [9], and deep
learning baselines trained end-to-end, including EEGNet [26] and
EEGConformer [27], with comparable downstream layers. Unlike
our modular framework, these baselines integrate spatial-temporal
processing internally, limiting adaptability to classical models like
SVMs and LSTMs. All experiments were implemented in Python
3.11 with PyTorch 2.0. A tiny set of hyperparameters was consid-
ered; Linear, with L1 penalties in {0, 0.5, 1}; SVM, with fixed RBF
kernels; DNN, with Adam optimizer with a cosine annealing sched-
uler, and lr in {5e-4, 1e-4, 5e-5, 1e-5}.

3. RESULTS

3.1. Model and Feature performance comparison

We benchmarked LaBraM and CBraMod against state-of-the-art
PSD features [9] and deep networks trained from scratch for cog-
nitive load estimation [26, 27]. Table 1 (a) reports average cross-
validated Pearson correlation over Cohorts D+E, 16 participants on
a 32-electrode setup. BFMs with group-average spatial and global
temporal pooling, especially LaBraM, consistently outperform prior
methods across all downstream estimator layers. LaBraM surpasses
CBraMod despite the latter’s asymmetric conditional positional en-
coding and larger pretraining dataset, likely due to its larger encoder
(6.2M vs. 5.2M params) and learned spatio-temporal positional
dictionary. BFMs provide high-resolution (per-second, per-channel)
encodings, enabling flexible downstream integration and improved
performance with end-to-end processing lasting less than a second
with all model configurations. In contrast, PSD compresses in-
formation early, limiting performance except with LSTMs, while
fixed models like EEGNet and EEGConformer require retraining
per dataset and offer limited flexibility with marginal gains.

3.2. Ablation Pooling studies

We perform ablation studies to evaluate the impact of spatial and
temporal pooling strategies on BFM feature aggregation across
SVM, Linear, and DNN downstream estimators. LSTM was ex-
cluded, as Mean and MeanStd temporal pooling have a collapsed
temporal axis. Table 1 (b) shows detailed results across models
and pooling combinations. No temporal pooling method consis-
tently outperformed others: Mean and MeanStd pooling effectively
reduced dimensionality, while global pooling preserved more infor-
mation, offering marginally better performance. In contrast, spatial
pooling had a more pronounced effect. Across all downstream lay-
ers, group-average spatial pooling consistently outperformed inter-
section pooling, suggesting that these BFMs capture complementary
electrode-level information that intersection pooling smears. In
other words, the use of anatomically informed pooling strategies
like group-average, allows for more expressive and generalizable
representations, despite heterogeneous EEG configurations.

3.3. Effect of variable EEG configurations

To assess robustness to data variability, we augmented the training
set of Cohort D with 14 additional participants from Cohorts A–C,
which feature heterogeneous cap configurations. The same nested
cross-validation setup was retained. Both CBraMod and LaBraM
pipelines were retrained using the best-performing Linear layer, and



Fig. 3: Average correlation trends with confidence intervals over training size (points of cohort additions shown with blue verticals). LaBraM
embeddings remain robust for the cognitive load task, while a Linear layer helps avoid overfitting to specific data cohorts. The x-axis appears
not-rounded as each point reflects the addition of full participant trial sets.

Fig. 4: Topomap of SHAP feature relevance, averaged globally (left) and per day (right); red indicates high importance. Daily averages of
cognitive load (decreasing over time), focus stability (declining), blink duration (increasing over time) are also shown.

average correlation scores were plotted as a function of training set
size (Fig. 3), expressed as a percentage of the full training set. Each
point reflects the cumulative addition of full trial sets from partic-
ipants, which results in uneven percentage increments (e.g., 17%,
32%, 46%), since not all participants completed all of their daily tri-
als. Blue vertical lines indicating cohort additions. Confidence inter-
vals are shown to illustrate variability across folds. Despite increased
variability, both models improved whereas LaBraM achieved larger
gains, indicating more robust and generalizable feature representa-
tions. The Linear layer appears robust against overfitting to cohort
additions, while SVM and DNN seem more affected at the change
points. Overall, SVM exhibited similar gaining trends across the
x-axis, while DNN performance remained unaffected.

3.4. SHAP explainability results

Fig. 4 (left) shows normalized global SHAP feature relevance, av-
eraged across all days and folds, while Fig. 4 (right) presents daily
SHAP maps alongside behavioral metrics (cognitive load, focus sta-
bility, blink duration). LaBraM emphasizes frontal and prefrontal
regions linked to cognitive control and decision-making [28], as well
as parieto-occipital areas linked to visual working memory [29, 30].
In contrast, CBraMod primarily highlights parieto-occipital regions,
consistent with the visual nature of the task, but lacks prefrontal em-
phasis, which may explain its weaker performance. These patterns
were consistent across all estimators (SVM, Linear, DNN), under-
scoring the robustness of the extracted features and SHAP’s model-

agnostic design. The longitudinal design, with participants returning
over multiple days, enables analysis of temporal trends in cognitive
load and training progression. Fig. 4 (right) presents daily SHAP
relevance maps alongside behavioral metrics of focus stability and
blink duration extracted from Varjo VR3. LaBraM shows increas-
ing prefrontal relevance over time, while cognitive load decreases
from 0.90 to 0.64 and blink duration increases from 0.19 to 0.23.
This suggests participants became more proficient and cognitively
efficient over time, while (potentially) more relaxed. These trends
align with behavioral indicators such as reduced focus stability and
longer blink durations, supporting the neurophysiological validity of
LaBraM’s feature representations [31]. In summary, prefrontal and
parietal channels dominate SHAP relevance, with prefrontal empha-
sis differences explaining LaBraM and CBraMod performance gaps.

4. CONCLUSION

We presented a scalable pipeline for cross-subject cognitive load es-
timation using Brain Foundation Models (BFMs), with LaBraM out-
performing CBraMod and other state-of-the-art models even with
Linear estimators. Our approach generalizes across heterogeneous
EEG setups and captures neurophysiologically meaningful patterns
in the frontal regions. The pipeline runs in under a second on stan-
dard CPUs, supporting real-time inference with a longer sliding win-
dow. Our findings support the use of BFMs for cognitive load esti-
mation, with future work aimed at integrating additional biometric
signals and complementary insights from multiple XAI methods.
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