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Abstract

Large Language Models (LLMs) are increasingly being used to plan, reason,
and execute tasks across various scenarios. Use cases like repeatable workflows,
chatbots, and AI agents often involve recurring tasks and tend to reuse similar
prompts when interacting with the LLM. This opens up opportunities for caching.
With structurally similar prompts that differ in subtle yet important ways, which are
also reflected in their corresponding responses, exact prompt matching fails, while
semantic caching techniques may return cached responses that are incorrect since
they ignore these variations. To address this, we introduce GenCache, a generative
cache that produces variation-aware responses for structurally similar prompts. It
identifies and reuses the pattern in which responses are generated for structurally
similar prompts for new requests. We show that GenCache achieves an 83% cache
hit rate with minimal negative hits on datasets without prompt repetition. In agentic
workflows, it improves cache hit rate by ∼20% and reduces end-to-end execution
latency by ∼34% for one workflow compared to standard prompt matching.

1 Introduction
AI applications (consisting of AI agents) augment Large Language Models (LLMs) with external
tools [25, 39, 32]. This allows LLMs to interact with the environment and solve intricate tasks
[44, 48, 40, 2, 29, 31, 56]. Many such applications themselves tackle similar recurring tasks, and
this naturally leads to constructing similar prompts across tasks [18]. For instance, structured
repetitive workflows like data entry or customer service agents encounter repetitive queries with
minor variations, or cloud operations agents frequently diagnose recurring system faults [46, 37, 55].
Furthermore, prompt engineering techniques often format prompts with reusable templates (called
system messages for AI agents), leading to similar prompts. Previous approaches have shown that
caching and reusing prompts and associated responses on the application side can significantly reduce
latency and cost for such recurring tasks [11, 60, 61, 42, 19, 18, 17].
Existing client-side LLM caches are typically designed as key-value stores. Traditional exact request
(or prompt) matching returns a cached value if the new prompt exactly matches a stored prompt
key [24, 38, 30], while semantic caches return a cached value based on semantical similarity of the
new request with a stored prompt key [11, 17, 18]. Similarity is computed using vector embeddings,
where two keys are considered similar if their cosine distance surpasses a predefined threshold.
However, these caches fail for applications where prompt-response pairs show two key properties: (a)
the prompts are not exact matches or semantically similar, but instead structurally similar, i.e. follow
a consistent format with minimal yet important controlled variations (formally defined in §2), and (b)
their responses also follow a predictable consistent format, but are not identical to each other; they
are novel and correlated to the variations in prompts. Consider a web-shopping agent [29, 56, 21]
that queries an LLM to determine its next action based on the current page content and the user
instruction. Consider two user instructions that together satisfy both the properties mentioned above:
(1) buy 12 AAA batteries from Amazon, and (2) buy a USB-C cable from Amazon. While exact
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Figure 1: Comparison of GenCache with existing caching techniques. treats both instructions as distinct and
results in cache misses, hence uses LLM to generate responses for both. GPTCache encounters cache hit for
Instruction 2, but incorrectly returns the already saved response for a similar prompt. GenCache on the other
hand, executes the cached program locally on cache hit to generate the correct response tailored to the input

prompt matching (ExactCache in short) treats them as distinct and hence both suffer cache misses, a
semantic caching technique like GPTCache [11] considers them as semantically similar, resulting
in a cache miss for instruction 1 and a cache hit for instruction 2. However, this is incorrect since
GPTCache’s response for instruction 2 is identical to the response for instruction 1, as shown in
Figure 1. Exact prompt matching strictly prohibits any variations for key matching, thereby ensuring
correctness and sacrificing performance. Semantic caching, on the other hand, ignores minimal but
potentially important variations, thus risking occasional incorrect results, which may be dangerous if
agents perform a non-reversible action.
In this work, we propose Generative Cache (GenCache in short), a new caching technique that
finds a balance between the performance-correctness trade-off. Unlike traditional caches that return
stored LLM responses verbatim on a cache hit, GenCache generates custom responses tailored to
the prompt, enabling higher cache hit rates without compromising accuracy. This requires prompt-
response pairs to satisfy the two key properties described previously, common in AI agents, repetitive
workflows, and chatbots. In the example above, instructions 1 and 2 have a similar structure
(verb-item-phrase) with minor variations, in verb synonyms (buy and purchase) and the item name.
GenCache automatically discovers such structural similarity and generates a cache hit. On cache
hit for instruction 2, GenCache synthesizes a custom response (similar in structure to the previous
response) with the important variation in item name—Figure 1 depicts this workflow.
GenCache clusters structurally similar prompt-response pairs based on their embedding similarity
and generates a program that takes the prompts as input and synthesizes the correctly formatted
responses as output. This program captures a common pattern of how the prompt maps to the response
across all the prompt-response pairs in the cluster, and saves it as a cache. A new prompt request
is matched with an existing cluster based on its embedding similarity, and the stored program is
executed locally via a runtime like Python interpreter to generate a response. Unlike existing caches
that store prompts and their LLM responses, GenCache stores prompts and the program that can
generate these responses. Our evaluations on the Webshop dataset [51] demonstrate over 83% cache
hit rate and at least 35% cost savings. On a synthetic dataset with higher structural similarity, cache
hit rate is above 98%. When integrated with existing AI agents, it reduced the end-to-end execution
latency and achieved 20% higher hit rate. In summary our contributions are:

• We propose a new caching technique, GenCache, for structurally similar prompts that can generate
novel variation-aware responses for new prompts.

• GenCache identifies common patterns of generating response from structurally similar prompts
within a cluster, and encodes the pattern in the form a program. GenCache then validates the
program for correctness and stores it as cache.

• We compare our method with synthetic and benchmark datasets, and report our results by
integrating it with two agent frameworks that perform repetitive tasks.

2 Problem Definition
Repetitive tasks or tasks following a similar template [59] are ideal for GenCache to extract the
common pattern between multiple prompt-response pairs. Some common use cases are as follows.
Key Use Cases: Apart from the example in §1, other use cases are: (1) SRE agents [46, 37, 55] on
receiving system alerts execute the remediation step by following relevant troubleshooting documents.
Alerts are repetitive and have templates, for example, "NSM to RNM connection is lost in useast1"
and "NSM to RNM connection is lost in uswest1" differ only in the region name. Such alerts map
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to the same documentation, and SRE agents follow the same steps by only modifying the affected
component. (2) Web agents managing Google Maps may have repeated queries with minor variations
How long does it take to walk from Univ of Pittsburgh to starbucks on Craig Street? and How long
does it take to walk from Carnegie Mellon University to Univ of Pittsburgh?. Such agents will need
to create a similar API call by varying parameters to serve the structurally similar queries. However,
GenCache is not suitable for free-form chatbot interactions, which show high prompt diversity, for
which semantic caching remains the best alternative.
GenCache is particularly effective for ReAct-style prompting [52] when the expected response is a
structured action. In this work, we target use cases involving reversible actions, which are common
across many applications like system fault identification (only read queries are issued to databases),
adding items to a cart in an e-commerce website (can be checked and removed), checking distances
between two endpoints in map (endpoints can be rectified), etc. GenCache operates only on the final
prompt constructed by an agent, which includes all contextual and user-specific personalization logic.
Formal definition of Prompt Characteristics: Let x be an individual request (or, user instruction)
from a set of repetitive requests T . Let α(x) be the constructed prompt passed to the LLM by a client
or an agent, and β(x) be the corresponding response. Different characteristics of α(.) and β(.) for
two requests x1, x2 ∈ T provide distinct caching opportunities.

1. (Identical Prompts) If α(x1) = α(x2) and β(x1) = β(x2), it implies identical input prompts
generate the same LLM responses, ideal for exact prompt matching.

2. (Semantically Similar Prompts) If α(x1) ∼ α(x2), but β(x1) = β(x2) implies Semantic Caching
techniques like GPTCache [11], InstCache [61] and others [17, 18] are ideal.

3. (Structurally Similar Prompts) If α(x) = a1.x.a2 and β(x) = b1.f(x).b2 where a1, a2, b1, b2
are prompt phrases (e.g., phrases like "buy" and "from Amazon" in the prompt "buy item X from
Amazon") and f(x) is a transformation on x (e.g., extracting keywords like "item X" from the entire
prompt using a regular expression) which are common over multiple requests, GenCache can
automatically identify a1, a2, b1, b2 and f(.) from multiple examples using regex matching over
α(x) and β(x). This allows it to locally generate β(x) for any new request x. Unlike ExactCache
and semantic caching, GenCache does not require that β(x1) = β(x2). Furthermore, since short
prompts by nature exhibit only a handful of deviations in their way to write, GenCache can also
capture such minor deviations (typically synonyms) in a1, a2 (for example, "buy" and "purchase"),
by using an "OR" operator in the regex pattern.

4. (Structurally Dissimillar Prompts) When neither α(x), nor β(x) show commonalities in their
structure or phrasing, GenCache does not generalize well

3 GenCache Design
3.1 Overview

The overall workflow of GenCache (Figure 2) follows the general cache pattern, i.e., for each
incoming input prompt P , identify the correct cache and attempt to use it to return the result. If
successful, we directly return the response generated by the cached program. If not, the processing
path is same as if the cache did not exist, i.e., to use an LLM. Before returning the LLM-generated
response, it is stored in a database along with the prompt so that a cache generation attempt can be
made. The primary tasks for cache generation are–(I) cluster similar input prompts together such that
there is a consistent pattern in the way an LLM generate responses for each of those prompts, (II) for
each cluster, identify the consistent pattern (we leverage an LLM) and convert it to a program, and
(III) validate whether the generated program is error-free and cache it for further use. For step II, we
use in-context learning [12, 33] to help the LLM identify how responses relate to their input prompts
within a cluster, and then prompt it to generate the pattern that mirrors this relationship.
Along with the cached program, we store a regular expression representing the structure of clustered
prompts, which aids in cache selection at runtime. A new prompt P is matched to the closest cluster
based on cosine similarity of its text embeddings to the cluster center. The stored regex verifies
whether the clustered group of prompts is structurally similar to the new request. If so, and a cached
program exists for the matched cluster, GenCache executes it using a runtime like Python interpreter
and returns the generated response after sanity checks. The cached programs are generated with
enough exception handling blocks to catch an exception when it does not apply to P .
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Figure 2: GenCache workflow (solid lines: cache reuse, dotted lines: cache generation). Figure 2a illustrates
the cache reuse process–For a new prompt P , the system finds the nearest cluster based on a similarity threshold
and checks for an available cache for reuse 1 . If a suitable cache is found, it generates response R after passing
sanity checks 2 . If not, an LLM generates R 3 . In this case, we store (P , R) in the cluster database 1 . Once
enough example pairs accumulate in a cluster, CodeGenLLM attempts to generate a program 2 and store it in the
cache store 3 after validation. Figure 2b shows the prompt for CodeGenLLM and the generated program.

3.2 Prompt Clustering

Consider an LLM generates the response R for an input prompt P on a cache miss. Similar sets
of (P,R) pairs are clustered together and stored. For each prompt P , we first convert it to an
n-dimensional embedding ep using SentenceTransformer [36]. If no clusters exist, we initialize a
new cluster C0 with the pair (P,R). However, in LLM systems, prompts are often wrapped in large
common templates (system messages), which can dominate the embedding and cause semantically
unrelated prompts to appear similar. To mitigate this, we also use response similarity along with
prompt similarity for clustering. In agentic use cases, R is often structured as a JSON (not plaintext),
since agents need to decode specific "actions" from the response. Thus it contains multiple key-value
pairs, and sentence-level embeddings may be insufficient. Therefore, we create an embedding array
[er] by computing n-dimensional embeddings for each value of the key-value pair of R.
We now compute two similarities of P with each cluster Ci, one based on prompt embeddings and
the other on response embeddings. The prompt similarity score sp is the cosine similarity between ep
and the cluster prompt centroid cpi (the mean of all ep embeddings in Ci). The response similarity
score sr is the average cosine similarity between [er]j and the cluster response centroid [cri ]j (mean
of all [er]j embeddings in Ci at index j) across all indices j. We additionally verify that the number
of key-value pairs matches between R and the response centroid.
To assign the input prompt to a cluster C, both sp and sr must exceed a threshold, and their sum
should be the highest among all candidate clusters. Let {Cp} be the set of all clusters whose sp

is greater than a similarity threshold T p, while {Cr} is the set of clusters whose sr is greater than
another threshold T r. {Cint} = {Cp} ∩ {Cr} captures the set of clusters where both the similarities
are over the threshold. The most similar cluster C for (P,R) is chosen such that the similarity is the
maximum, i.e., C = argmaxCint(sp + sr).
GenCache performs online clustering without any constraint on the number of clusters. Each cluster
is stored as a key-value store where the cluster-ID forms the key and the group of prompts and their
corresponding LLM responses along with their embeddings form the values.

3.3 Program Generation for Cache

For each cluster C, we use an LLM (CodeGenLLM) to generate a Python program to be stored
as cache. Similar ideas have been explored previously [13, 16], but their solution is tailored to-
wards solving mathematical reasoning tasks. The program we generate takes as input the prompt
P and outputs the response R in the expected key-value format. To generate the program, we
provide CodeGenLLM with a sufficient number of prompt-response pairs from C as in-context ex-
amples, and prompt it to identify the underlying pattern that maps most input prompts to their
responses. The underlying pattern must identify the variations in the structurally similar prompts
and use these to generate the response. We noticed that such variations are often keywords from
the input prompt (e.g., in Figure 1). Since the prompts for our use case have a specific sentence
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Figure 3: Program validation process before storing it as cache. Step numbering remain consistent with
Figure 2a, and we only show from 2 onwards here. After program generation 3 , ValidLLM validates that
the program-generated responses match expected outputs by using in-context examples in the prompt 4 . It
produces a boolean-array for each example 5 . If less than half matches, the system retries cache generation
using a reflection-based prompt 6 . Otherwise, it stores the validated program as cache 7 .

structure, a regular expression can typically be used to extract those keywords. Thus, if a consis-
tent pattern is detected, CodeGenLLM generates a program that performs regular expression search
to extract the necessary keywords from the prompt and synthesize the desired response in the
correct format. Returning to our running examples from §1, CodeGenLLM finds and encodes the
consistent pattern with a regular expression r‘buy|purchase|get (item_name) from Amazon’.
Note that the regex contains possible synonyms for terms or phrases. It takes a user instruction
"buy item from Amazon" as input and produces the response actions:(1) go to Amazon.com,
(2) Search("match.groups(0)"), and (3) press enter’, by replacing the item name in
match.groups(0). Figure 2b shows the prompt snippet used for CodeGenLLM.
The prompt for CodeGenLLM includes both the common template and the user instruction for each
in-context example. Providing the template enables the LLM to infer the way responses were
derived from the input prompts. These multiple examples guide CodeGenLLM to identify a consistent
pattern, write a program with regex search computations, and capture the necessary variations. The
CodeGenLLM prompt also provides guidelines for appropriate error handling, format adherence, and
default {null} response when regex matching fails. This ensures that the generated program produces
reliable outputs and avoids malformed responses, that could otherwise disrupt an agent execution.
The full prompt used for CodeGenLLM is included in the supplementary material. GenCache does not
impose strict limits on P or R length. While short dialogue prompts often exhibit the two properties
discussed in §1, longer prompts generated by automated systems (e.g., SRE agents) can display
similar behavior, as shown in our evaluations.
A minimum number of exemplars, maintained as a hyperparameter ν, is needed before CodeGenLLM
is invoked. If a cluster contains more than ν exemplars, all exemplars are used in the prompt for
CodeGenLLM. However, each cluster is limited to at most 3ν exemplars (§3.5), and hence the prompt
does not grow indefinitely. A higher ν enables CodeGenLLM to easily identify the patterns, but also
increases the risk of introducing noise to the in-context examples if the clusters contain outliers. We
evaluated against varying ν to analyze this trade-off. Once a cluster contains at least ν exemplars,
program generation is invoked in the background without affecting the critical path of client response.

3.4 Program Validation

Before a generated program is stored as a cache, it must be validated for correctness, specifically,
whether it can process the input prompt, extract relevant keywords from the prompt, and generate
the response with correct variations in the required format. This validation step ensures that only
error-free code or code with appropriate exception handling (to indicate incorrect results) is stored.
We use a separate LLM, ValidLLM, to validate the generated program. Using the same exemplars
that were used to create the program (§3.3), we execute the program locally via a Python interpreter
to obtain program-generated responses. ValidLLM assesses whether each response matches its
corresponding exemplar response, both in content and format. For the text sentence portions,
ValidLLM checks for semantic correctness and the presence of ‘key information’ instead of strict
matching. E.g., "The User wants to purchase Item X" and "user wants to buy item X" will be evaluated
as a match. ValidLLM returns a boolean (0 or 1) indicating correctness for each example along with
a justification. This process verifies whether the exemplars used to build the cache yield correct
program-generated responses.
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If fewer than half of the program-generated responses match their exemplars, we retry program gen-
eration with reflection, which incorporates ValidLLM’s justification feedback into the CodeGenLLM
prompt. However, if at least half of the responses match, the program is accepted as a cache and
stored in the cache store. While one alternative is to filter out non-matching examples and reassign
them to a new cluster, this often results in numerous fragmented clusters highly similar to each other,
so we avoid this approach. Figure 3 illustrates the overall program validation process. GenCache
limits the number of cache generation retries for a cluster to ρ to prevent increasing the cost of cache
generation. The prompt used for ValidLLM is included in the supplementary material.
The generated program may overfit to specific exemplars (e.g., contain hardcoded keywords). To
address this, we (i) prompt CodeGenLLM to include appropriate error handling blocks (§3.3), (ii)
validate the prompt structure with the general structure of all prompts within the matched cluster with
a regex before using the cache (§3.1). On failure, GenCache defaults to the LLM for response.

3.5 Cache Management

Each cached Python program is typically under ∼5KB, so the total cache size is capped at a few tens
of MBs. When cache is full, the eviction policy discards the least-recently used cache entry while
retaining its associated cluster. Clusters are stored in a database that was allocated a few hundred
MBs, although usage remained below 20MB in all our experiments. To prevent clusters from growing
indefinitely, GenCache limits each cluster to 3ν prompt-response pairs. If a cluster C is full during
prompt clustering, no new entries are added to it. We also avoid storing the prompts on cache hit, so
higher hit rates further reduce the database size. A cached program may still fail for a new request.
In such cases, GenCache may regenerate the program for the corresponding cluster, but the total
regeneration retries are capped at ρ.

4 Experiments
Setup: We implement GenCache as a library and expose an API interface to which clients issue
input prompts. It either returns a cache-generated response or uses an LLM to return the response on
cache misses. We evaluated GenCache in two scenarios: (1) issue standalone user prompts (§4.1,
§4.2)–we create synthetic data as discussed below, and (2) integrate with two AI agents (§4.3). While
GenCache can be used with agents built using any framework, we evaluate with simple prompt-based
agents and leave the incorporation with a more performant agent for future work. The first agent is an
open-source web navigation agent Laser [29, 7], built on the OpenAI Chat Completion [1] framework.
It plans and executes webpage actions like "Search" and "Buy" to purchase items/add appropriate
items to the cart based on user instructions. The second agent, AgentX, is a cloud-operations agent
built using LangChain [6] that diagnose recurring system faults. Given an incident description, it
retrieves relevant troubleshooting documents via RAG [25], and follows the relevant steps until
the root cause is identified. However, we restrict it from conducting any mitigation. Both agents
use ReAct-style prompting [52]. We use GPT-4o for CodeGenLLM and ValidLLM, and set a default
ρ = 30 for each cluster based on empirical decisions. Small prompt modifications are applied to
CodeGenLLM and ValidLLM prompts to accommodate task-specific characteristics. On cache misses,
GenCache use GPT-4 to generate responses for AgentX, and GPT-4o for all other experiments. We
run our experiments on cloud servers with 8-core Intel Xeon CPU and 64 GB memory.
Datasets: Since GenCache excels at repetitive tasks with structurally similar prompts, popular
language understanding benchmarks [43, 49, 57, 27, 54] that evaluate an LLM and Agent’s com-
prehensiveness on diverse tasks are not suitable. We thus evaluate on prompts from WebShop [51],
a simulated e-commerce environment featuring 12000+ diverse crowd-sourced user instructions.
Similar to Laser [7], we augment each instruction with a maximum price. Thus, each instruction
follows a consistent structure: a verb indicating purchase request (e.g., "I want to buy"), then an
item description with attributes, and a price limit. The item and price (i.e., the parameters) vary
across prompts, while the overall structure remains consistent with minor variations in the verb
phrasing, making this dataset ideal for evaluating our method. To evaluate the setup scenario 1, we
use WebShop’s user instructions as seed data and prompt GPT-4o to generate two sets of synthetic
prompt sets with the following characteristics:

1. Param-Only–only the parameters vary while phrasing remains identical. We use GPT-4o to extract
the item description (LLM is allowed to rephrase this) and price. We then reformat the instruction
using the template "I want to buy {item}, under the price range of {price}
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Param-Only Param-w-Synonym

Method Hit % +ve Hit -ve Hit Hit % +ve Hit -ve Hit

ExactCache 0 (± 0.0) N/A N/A 0 (± 0.0) N/A N/A
GPTCache [11] 90.92 (± 0.02) 0 (± 0.0) 100 (± 0.0) 88.71 (± 0.01) 0 (± 0.0) 100 (± 0.0)
GenCache 97.81 (± 0.96) 98.03 (± 0.05) 1.97 (± 0.05) 83.66 (± 6.37) 92.16 (± 0.12) 7.84 (± 0.12)
GenCache-feedback 82.35 (± 1.57) 99.63 (± 0.02) 0.37 (± 0.02) 68.32 (± 4.85) 95.58 (± 0.08) 4.4 (± 0.08)

Table 1: Baseline comparison of Hit Rate and its correctness with different prompt datasets

2. Param-w-Synonym–both parameters and the verb phrasing vary but the verb-item-price
semantics is maintained. We use GPT-4o to rephrase the instruction by adding some optional
words (like "please") at the beginning for a few prompts or splitting the sentence into two. This
alters the structure slightly without chaning the semantics.

These prompts are issued to GenCache’s API interface with the expected response of receiving just
the (item name, price limit) tuple.
Baselines: We compare GenCache to ExactCache and GPTCache [11, 4], a widely popular repre-
sentative among semantic caching techniques. For ExactCache, we leverage hash-based indexing of
prompts. GPTCache, however, uses embeddings similarity for prompt matching. We use the Sentence
Bert embedding all-MiniLM-L6-v2 [36] for computing prompt embeddings and the FAISS [22]
indexing strategy for similarity search with a similarity threshold of 0.95. We do not compare with
prompt-prefix matching techniques [10, 19] as they focus on low-level decoding operations and are
orthogonal to GenCache. Our baseline choices are well-detailed in the supplementary material.
We evaluate GenCache in the following categories:

1. What is the cache hit rate, and how many times does the hit result in an incorrect response?
2. What is the overall cost in terms of the number of LLM calls and the token sizes to create a

reusable cache? Does our cache generation cost exceed the savings we get?
3. How well does GenCache perform within repeatable agentic workflows?

4.1 Hit-Rate Measurements

We measure the cache hit rate of each method over 10,000 input prompts from the synthetic prompt
sets, and report the results in Table 1. Each experiment starts with an empty Cache Store and
Cluster Database. Thus, the first ν (default ν = 4) input prompts were used to populate the cluster
database before caching could even be attempted. Beyond measuring cache hit rate, we evaluated the
correctness of the responses generated by GenCache using GPT-4.1 with 5% sampled for human
feedback. GPT-4.1 verifies whether the item name and price extracted by the cache semantically
align with the ground truth and whether the item remains searchable in an e-Commerce setting. This
indirectly measures the reliability of ValidLLM’s semantic comparison. We classify each cache hit
as either +ve Hit or -ve Hit, i.e., proportion of hits where the item name, attributes, and price are
semantically correct (+ve Hit) versus those where it isn’t for search purposes (-ve Hit). We also extend
GenCache to reduce negative hits by incorporating feedback from GPT-4.1 that acts as an oracle
semantic correctness verifier. We name this method GenCache-feedback. When a cache-generated
response is identified as a negative hit, GenCache deletes the corresponding cached program, but
retains the associated cluster so that it can retry generating a new program.
We observe that GenCache achieves over 97% cache hit rate with ∼2% negative hits for Param-Only
dataset. Since only the parameters (i.e. item name and price) change, CodeGenLLM is able to reliably
detect patterns that can be cached as programs. The few negative hits are attributed to long, complex
item descriptions that might result in unsatisfactory e-Commerce search results for the specific item,
as flagged by GPT-4.1 and human feedbacks. For Param-w-Synonym where verbs phrases may
deviate, the cache hit rate drops to 84%, with a higher false positive rate. In addition to lengthy item
descriptions, false positives also arise due to cases where the item attributes follow a period. For
example, a cached pattern like r‘buy|need|purchase|get (item name)’, misfires on the user
instruction "want a wireless headphone. need it in black", returning "it in black" as the item. However,
using feedback lowers cache hit rate for GenCache-feedback since there are cache deletions, but the
negative hits also reduce. This shows that if a client (or an agent) can provide a feedback that the
response from cache use resulted in an error, GenCache can adapt and modify the cache.
ExactCache exhibits no cache hits, while all GPTCache’s cache hits are negative. Since there are no
prompt repetitions, no responses should be repeated as well. However, GPTCache returns a cached
response corresponding to a prompt that shows high similarity to the new request (example in §1).
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4.2 Cache Generation Cost vs Savings

GenCache incurs a cost for using CodeGenLLM and ValidLLM to generate programs and store them.
To be effective, this cost must not exceed the savings we get from cache hits. To evaluate this, we
measure the ratio of the number of LLM calls used for creating cache (cost) to the number of cache
hits (savings, or avoided LLM calls). We run GenCache with the default ν = 4 over 5000 input
prompts for each dataset type and plot this ratio over time as more prompts are processed in Figure 4.
For the first few prompts, GenCache incurs cost to create caches, hence the ratio exceeds 1. As
prompt count exceeds ν, the program is generated, validated, and cached, leading to a sharp rise in
cache hits, decreasing the ratio. Param-Only dataset exhibits a higher cache hit rate, hence a lower
ratio than Param-w-Synonym.
While Figure 4 elicits the cost for a fixed ν, varying ν changes the number of exemplars used
as in-context examples for CodeGenLLM, which will impact the number of LLM calls required to
generate a reliable and reusable cache. As shown in Table 2 with Param-w-Synonym prompts across 5
runs, increasing ν consistently reduces the number of LLM calls. More in-context exemplars enable
CodeGenLLM to detect recurring patterns and generate reusable programs. Although one might expect
diminishing returns with more in-context examples, we do not observe this effect. The structural
similarity and consistency of prompts reduce noise, so additional exemplars continue to improve
pattern reliability. This trend is expected to generalize across domains, with the trade-off being that
longer prompts increase program generation cost.
In addition to optimizing the number of LLM calls, GenCache must also minimize token usage, as
LLM pricing is often based on the number of input and output tokens [8]. To evaluate token usage
cost, we vary ν and compute the average tokens (input + output) used per user request for cache
creation across 5 runs (each run with 2000 prompt requests), comparing it with the cost incurred
during cache misses (Figure 5). As a baseline, we plot the token usage without using a cache. For
every ν, we observe that caching yields at least 35% token savings per request. For ν = 2, the
savings are as high as 73%. As ν increases, the average cost of cache construction increases due to
more in-context exemplars in the CodeGenLLM prompt. However, for each ν, this cost plateaus after
initially being high, while savings continue to increase as cache hits become more frequent than cache
creations over time. The cost dip at ν = 10 is because a highly reused cache was stored with very few
retries. Figure 5 shows large standard deviations in cache construction and cache miss cost, primarily
due to GPT-4o being unreliable across runs, and hence cache construction required multiple retires
for some runs. Suitable prompt engineering like optimized prompting, fewer repetitions of guardrails,
specifying the system message once, etc. can lower the cache construction cost. Alternatively, a
stronger model like GPT-4 can generate reliable programs with fewer retries.
Breakdown of Computational Overheads: A call to GenCache’s API interface follows different
steps depending on whether a cache hit or a miss occurs. Each call begins with a cache lookup to
identify whether a cache is present or not. The lookup consists of:

1. Embedding generation: converting the user prompt into an n-dimensional vector (∼ 0.042s)
2. Cluster similarity search: matching the embedding to the nearest cluster (∼ 0.009s)
3. Validating the user prompt by a regex check before reusing the cache, and bookkeeping

During a cache hit, all the above three steps for cache lookup are executed, followed by retrieving the
cache and running the program locally. The total latency is ∼0.176s (detailed breakdown in Table 3).
Embedding generation accounts for 22.16% of the cache hit workflow, while cluster similarity search
adds 4.5%. In a cache miss, regex validation is skipped during cache lookup because no cached entry
is found. However, the lookup overhead (0.056s) and database insertion of the prompt-response pair
(∼0.075s) add only ∼2.1% overhead, while an LLM call issued on a cache miss takes ∼3.5s on
average. Overall, clustering and cache reuse incur negligible overhead while providing significant
savings over using an LLM call to respond to a user request.

4.3 Impact on Agentic Workflows

We evaluate end-to-end performance impact of GenCache on two agentic workflows. Since such
workflows already leverage ExactCache by default, we deploy GenCache alongside it to measure
additional benefits. Table 4 reports improvements in cache hit rate and execution time, while Figure 6a
compares the cost against savings.
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Close-Up

Figure 4: Ratio of no. of LLM calls
used for creating cache to number of
cache hits plotted against incoming
prompts in time

ν LLM calls

2 32.4
4 29.6
6 21.2

10 17.2
15 18.8

Table 2: Total no.
of LLM calls to cre-
ate reusable caches

GenCache
Without
Cache

35%
73%

Figure 5: LLM token usage for caching com-
pared against the baseline of ’Without Cache’.
With no prompt repetitions, ExactCache incurs
same cost as the baseline

Cache Hit Workflow Time (s)

Cache lookup (includes identifying similar cluster) 0.112
Cache retrieval & local program execution (reusing the cache) 0.064

Cache Miss Workflow Time (s)

Cache lookup (to detect miss) 0.056
LLM call (to generate a new response) 3.520
Database insertion (to store the prompt-response pair) 0.075

Table 3: Cache Miss and Hit Workflow Times

Cloud-Operations Agent: We run AgentX using incident diagnosis data from Company-X, collected
over 2 months. The data includes a total of 298 incidents covering five different troubleshooting
scenarios. The top-1 troubleshooting scenario covers 69% of the incidents, while the top-2 covers
93%. This indicates that incidents are recurring, which will make caching particularly effective instead
of repeated LLM calls. To diagnose an incident, AgentX took 16 LLM calls on average, including
identifying the correct documents, generating a coarse and fine-grained plan, and conducting the
diagnosis. GenCache improved cache hit rate by 23% achieving 54% overall, compared to ∼34%
with ExactCache alone. Using GenCache also reduced the average diagnosis time of the agents by
∼25%. Figure 6a illustrates that as more and more incidents are handled by AgentX, the number of
LLM calls avoided due to cache hits outweighs the LLM calls incurred to create cache which plateaus.
The growing gap demonstrates GenCache’s long-term benefits. Out of 536 LLM calls made for
cache creation, only 10.4% (56/536) resulted in reusable caches within the workflow; the remaining
attempts were flagged as invalid by ValidLLM. There were also failure cases; across 298 incidents,
AgentX failed in only 3 cases (1%) due to mapping to an incorrect troubleshooting document as a
result of cache hit, but it was non-detrimental since we focused only on reversible workflows.
Web-Navigation Agent: We run Laser [29] on 200 requests from the WebShop dataset [51], which
iteratively queries the LLM, first for a rationale, then for the corresponding action type. The workflow
is typically to search for an item, compare item descriptions to user requirements, and ultimately
add it to the cart. Since rationales involve prompt-specific reasoning and are structurally diverse,
we disable GenCache for those steps. Instead, we enable GenCache only when the LLM selects
an action type and its parameters. On average, Laser required 12 LLM calls per request, of which
∼50% (1315 total) used GenCache’s API interface. Using GenCache, we observed 37.2% cache
hits (489/1315), with 12.8% of them (63/489) due to exact prompt matching. Similar to AgentX, we
see that the savings due to cache hit grow with more prompts while LLM calls for cache generation
plateaus in Figure 6b. GenCache incurred an additional 100 LLM calls for cache creation. Out of
these 100 LLM calls, 34% resulted in creation of reusable caches, while 66% failed (number of retries
capped at ρ = 30) since the exemplars that were clustered together were too different. Failure cases
were: (i) 5.5% of prompts failed due to the cached program repeatedly returning the wrong item
from the catalog, and (ii) 11% failed due to formatting errors in cached response–issues that can be
addressed through improved prompting, output guardrails, or providing feedback to GenCache. Long
and complex item descriptions, which were flagged as negative hits in Table 1, did not lead to failures
here, since the multi-step workflow included intermediate LLM calls for generating rationales, which
mitigates the impact of complex item descriptions.
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Agent Performance Metrics GenCache+ExactCache ExactCache

AgentX

No. of API calls 4725 4960
No. of LLM calls for Cache Creation 536 N/A
% Cache Hits (ExactCache contribution) 54.7% (31.1%) 34.4%
Execution Time 39.91s 53.45s

Laser

No. of API calls 1315 1308
No. of LLM calls for Cache Creation 100 N/A
% Cache Hits (ExactCache contribution) 37.2% (12.8%) 5.7%
Execution Time 5.02s 5.16s

Table 4: Evaluating the benefits of using GenCache in regular agentic workflows
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Figure 6: Comparison of LLM calls avoided due to cache hit (savings) with the LLM calls incurred for cache
creation (cost). As more inputs are processed, the gap between savings and cost widens.

4.4 Sensitivity Analysis

Similarity Threshold for Clustering: We varied the similarity thresholds T p and T r (see §3.2),
which determine the nearest cluster for a new prompt. Earlier evaluations used default values of
T p = 0.8 and T r = 0.75. We observed that with higher T p and T r than the default, the cache hit rate
dropped significantly since fewer prompts were grouped, resulting in many small clusters that lacked
sufficient exemplars (ν) to generate a program. New prompts were often mapped to clusters that did
not have cached programs associated with them. Even existing cached programs failed to extract item
names due to overfitting on limited exemplars. In contrast, lowering the thresholds grouped more
diverse prompts into a single cluster, making it harder for CodeGenLLM to learn consistent patterns,
again reducing cache hits.
Matching threshold between program-generated response and exemplars:

5 Related Works
Semantic Caching: While GPTCache [11] is a popular semantic caching approach, few works
have focused on implementing a caching architecture to make semantic caching usable in real-world
settings [14, 26, 34, 60]. SCALM [26] identifies requests frequently visited by users and selectively
caches those requests, while [60] improves LLM inference by introducing model multiplexing along
with semantic caching. However, [60] relies on the existence of some semantic caching oracle that
can group prompts without false positives. LangCache [17] innovates on the embedding layer by
domain-adaptive fine-tuning of the embedding models. MeanCache [18] introduces a user-centric
semantic caching system that preserves user privacy, and hence employs federated learning to build
different embedding models locally at each user device. InstCache [61] introduces predictive caching
for short user prompts by predicting user instructions using LLMs and pre-populating the cache.
Prompt Caching: Reusing attention states using Key-Value (KV) Cache is a popular LLM inference
optimization for a single prompt during autoregressive token generation [35]. Prompt caching [19, 50,
10, 58, 53, 28] extends this idea to multiple prompts, where KV caches across multiple prompts are
reused based on prompt prefix matching. Prompt Cache [19] designs an explicit structure for writing
prompts to enable seamless detection of prompt prefixes. SGLang [58] and ChunkAttention [53]
build efficient data structures for KV cache reuse, while works like Cache-Craft [10] and Cache-
Blend [50] implement prompt caching for RAG systems by efficiently reusing and recomputing only
the necessary cached chunks. Prompt caching is also used in popular LLM services [9, 3] to reduce
costs. However, these works are orthogonal to GenCache, and they can be used in parallel to reduce
costs when GenCache incurs a cache miss.
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6 Summary and Discussion
We proposed GenCache, a novel caching technique for structurally similar prompts that uses LLM to
identify a common pattern to generate responses from similar prompts, and caches the patterns as
programs after validation. On a cache hit, a stored program is executed to generate variation-aware
responses. Future works include supporting structurally diverse prompts and non-reversible agent
workflows, a limitation of the current work. Furthermore, modifying AI agents to identify negative
hits and relaying back the feedback to the caching layer can help improve cache accuracy over time.
Designing structured human-LLM interaction schemas, like in [19] will enable better caching.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: Have listed the contributions and the claims in the abstract and introduction, along
with experimental numbers. These are reflected in the evaluation section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the conclusion section, while the scope limitations
are mentioned in the Problem Formulation Section 2. We also discuss it in the Supplementary
material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: There are no theoretical results in the paper
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions of
the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Have tried our best to provide all implementation details in the experiments section.
We will include prompts that we use for the LLMs in our design in the Supplementary material.
We also include code along with the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We will include the code in the supplementary material. The data is open source
and we specify how to generate synthetic data in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We have written a ’Setup’ subsection at the start of the Experiments section to
specify the setting. Other details are presented in the Supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we have reported standard deviation in our main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
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Answer: [Yes]
Justification: Yes, we have reported the server configuration on which we run our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms to the Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: The paper does not have any perceivable negative societal impact. The paper
motivates the problem with the help of an application, hence its positive impact will help the
applications that fall into the scope of the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
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Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We cite the original paper and the libraries that we use. Libraries with specific
versions will be included in the requirements file along with the code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We share the code in the Supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing nor research with any human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have used LLM as a component in our design and we describe the methodology.
The prompts used for these LLMs are included in the appendix section of the supplementary
material
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Appendix
Here, we provide detail about the following topics:

1. Code Link
2. Choice of Baselines
3. Limitations of GenCache
4. Prompts for the LLMs used
5. Data for AgentX
6. Structural Modification to the Data
7. LLM token usage pattern over time

Code Link

Code link for GenCache is available at https://anonymous.4open.science/r/GenCache_
Artifact-ED54/

Choice of Baselines

GenCache stores the input prompt along with the generated program in its cache store. The program
can then be executed locally via a runtime like Python interpreter to generate the correct response
for the input prompt. Thus, the obvious candidate for a baseline is the exact prompt matching
(ExactCache), which returns the same response verbatim when the input prompt is identical.
Semantic caching is a widely used technique for LLMs where input prompts are matched to stored
prompts based on embedding similarity, and a cache hit returns the exact response associated with
the matched prompt. There are multiple semantic caching techniques in the literature. We chose
GPTCache [11] as the representative approach due to its wide popularity and well-maintained library
(over 7500 stars on Github [5]). Other approaches, such as Mean Cache and the method proposed by
Gill et al.[17], improve semantic caching by customizing the embedding model via fine-tuning on
domain- and user-specific data. However, these methods are not open-sourced and, like GPTCache,
suffer from a key limitation that in datasets without prompt repetition, any cache hit results in a
negative hit. InstCache [61] is a recent predictive caching technique that predicts tokens likely to
appear in an input prompt and precomputes responses for different token combinations using an
LLM. Since InstCache does not have an available open-source code, reproducing its functionality is
infeasible without knowledge of the exact prompting strategy used.
Zhu et.al. [60] introduce caching with model multiplexing to improve LLM inference. However, their
caching technique is primitive, they check whether the request id is present in the cache or not. If
so, it uses the same response verbatim, otherwise, it uses LLM to generate the response and chooses
to add the request to the cache based on a novel cache replacement policy. Since GenCache’s main
technique is generating an appropriate reusable cache, rather than a cache replacement policy, [60] is
not an ideal baseline.
Prompt prefix matching is a common caching technique where, if a new prompt shares a prefix
with a stored prompt, the key-value (KV) caches of the stored prompt are reused to accelerate
inference. Many works leverage this idea [19, 9, 23, 15, 53]. Other works like Cache Blend [50]
and CacheCraft [10] extend this idea to adapt within the RAG framework, while also selectively
recomputing attention states when prompt prefixes differ slightly. However, these techniques op-
erate at the level of KV cache reuse and represent low-level decoding optimizations, making them
orthogonal to our approach. While such methods reduce inference latency, GenCache focuses on
reducing the frequency of LLM calls altogether. That said, prompt prefix matching can be integrated
into GenCache as an optimization during cache misses, when LLM invocations are required anyway.

Limitations

We scope GenCache’s applicability to AI agents that use structurally similar prompts for repetitive
tasks, such as fault diagnosis, web navigation, and computer-using agents. We also observe improved
performance for agents that follow ReAct-style prompting [52], particularly when LLM responses
are actions, as they tend to follow consistent patterns across different agent invocations. Thus,
future works include expanding GenCache to more general prompting structure and agent designs.
Prompting strategy for CodeGenLLM and ValidLLM could be improved to reduce the number of LLM
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token usage for generating cache. Some common strategies that can be used to improve the prompting
is Reflexion [41], Chain-of-Thought [47], Plan-and-Solve [45], self-critic [20], etc.

Prompts for the LLMs used

Note that the prompts are not optimized, and there will be multiple repetitions in the instructions
provided. A more optimized prompt conveying the same message will improve the LLM token usage
for CodeGenLLM and ValidLLM.

CodeGenLLM Prompt (for Web-Navigation Agent and with WebShop dataset; clients use
OpenAI Chat Completion API to interact with the LLM)

You are an expert who can analyze a few example prompts and their corresponding responses and
find a common intent from which the responses were generated by the prompts. Once you find the
common intent, your task is to generate a Python program for it.

The example prompts will have a ‘system’ role, a ‘user’ role and might have a ‘function’ descrip-
tion. Your task is to analyze the ‘text’ part within the ‘content’ subfield of the ‘user’ role to find
a common pattern across the examples. The part that is to be analyzed will contain some static
phrases and some variable phrases. You need to understand how these parts relate to the response.
If the responses across all examples are similar (e.g., searching a product), the common pattern
must be able to identify how to structure the response based on the static and the variable parts of
the phrase.

Your job is to:
1. Identify a consistent pattern across examples
2. Generate a Python program that extracts key variables (e.g., item name, attributes, price) using

regex and constructs the response accordingly.
3. Ensure the program works for arbitrary prompts that follow the same overall structure, even

with minor variations or synonyms.

Here are some guidelines for pattern extraction:
1. Write a regular expression that can extract the variable parts of the phrase from the user

instruction
2. Find reusable structures in the prompts, e.g., "buy {item} from Amazon". Identify and divide

the human prompt into verb, item and price phrases.
3. For each part of the phrase, write regex containing synonyms using the examples provided

(e.g., if the prompt says "find me", synonyms are "i want to buy" or "i am looking for"). Use
up to a MAXIMUM of 5 synonyms per phrase (no more), or the code may raise EOL errors.

4. Use the synonyms to write a regex to identify the item along with its attributes, and the price
of the item

5. Generate regex that captures most prompts and is general enough to apply to new prompts,
not just the seen ones (e.g. for keyword extraction, identify where the keyword appears in
the sentence and extract them from the similar part of the sentence for any arbitrary user
instruction, but following the same prompt template). Please go through all the examples
provided before coming up with the regex pattern.

6. Use re.DOTALL if needed (e.g., multi-line string matching).

Example Input Prompts and their Corresponding Responses
==============================================

Guidelines for the code output format and other generic guidelines:
1. Analyze only the ‘text’ portion in the ‘content’ subfield of the ‘user’ role.
2. The code must produce an output in the exact format shown in the example responses. For

responses in the format of a dictionary, there should be no additional key-value pairs, otherwise,
there will be errors in the downstream task that uses this output.

3. Put escape characters for single and double quotes wherever necessary to avoid syntax errors.
4. Replace \\n with \n in the final code to handle newline characters correctly from the command

line input of the prompt.
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5. Put ample try/except blocks to catch errors. The code should not crash for any input prompt.
If any error occurs, print ‘None’ and the error.

6. Every if/elif must be followed by an else to handle unmatched conditions. If no conditions
are satisfied, the else block should print ‘None’ along with the reason.

7. The code should be complete with no EOL or syntax errors.

Guidelines for Code Execution Format:
1. The code generated will be saved as ‘runnable_code.py’.
2. It will be run as ‘python3 runnable_code.py <input-prompt>’
3. The code must execute without any manual intervention and take the entire prompt (save it in

the variable name ‘prompt’) as command-line input <input-prompt> which includes both
the fixed and the variable parts

Final Instructions (strict):
1. Output only the complete Python code.
2. Do not print any explanation, description, or English text apart from the code
3. The output format should exactly match the format of the example responses.

Now Begin!!

CodeGenLLM Prompt (for Cloud-Operations Agent; clients use Langchain API to interact
with the LLM)

You are an expert who can analyze a few example prompts and their corresponding responses and
find a common intent from which the responses were generated by the prompts. Once you find the
common intent, your task is to generate a Python program for it.

The example input prompts provided below will have a prompt template, describing what the
LLM was asked to do. This is the static part. It will also contain a dictionary of inputs where each
key-value pair can be represented as ‘{abc:def}’. To reconstruct the actual prompt that was
used to query the LLM, replace each key (‘abc’) in the template with its corresponding value
(‘def’). The ‘def’ part in the full prompt is the variable part. Your goal is to analyze how this
transformed prompt maps to the given output and find a generalizable pattern that applies across
all examples. If the responses across all examples are similar (e.g., calling the same API with
some parameters), the common pattern must be able to identify how to structure the response
based on the static and the variable parts.

Your job is to:
1. Identify a consistent pattern across examples
2. Generate a Python program that extracts key variables using regex and constructs the response

accordingly.
3. Ensure the program works for arbitrary prompts that follow the same overall structure.

Here are some guidelines for pattern extraction:
1. The common pattern can be a code to perform a task (extracting a substring from a string) or

even a text sentence if all the example responses are sentences with minor changes that do not
alter the semantics.

2. For extracting a substring from a string, strip leading/trailing whitespace from the string before
matching.

3. Generate regex that captures most prompts and is general enough to apply to new prompts,
not just the seen ones (e.g. for keyword extraction, identify where the keyword appears in
the sentence and extract them from the similar part of the sentence for any arbitrary user
instruction, but following the same prompt template). Please go through all the examples
provided before coming up with the regex pattern.

4. Use re.DOTALL if needed (e.g., multi-line string matching).

In the examples below, the input dictionary is written in the form:
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```
KEY -> ABC
VALUE -> def
```
Example Input Prompts and their Corresponding Responses
==============================================

Guidelines for the code output format and other generic guidelines:
1. The code must produce an output in the exact format shown in the example responses without

‘Thought’. For responses in the format of a dictionary, there should be no additional key-value
pairs, otherwise, there will be errors in the downstream task that uses this output.

2. Do NOT include ‘Thought’ in the code-generated output, even if it appears in the examples.
3. Put ample try/except blocks to catch errors. The code should not crash for any input prompt.

If any error occurs, print ‘None’ and the error.
4. Every if/elif must be followed by an else to handle unmatched conditions. If no conditions

are satisfied, the else block should print ‘None’ along with the reason.
5. The code should be complete with no EOL or syntax errors.

Guidelines for Code Execution Format:
1. The code generated will be saved as ‘runnable_code.py’.
2. It will be run as ‘python3 runnable_code.py <input-dict>’
3. The code must execute without any manual intervention and take the input dictionary in the

form ‘{abc:def} passed as a string as command-line input <input-dict>.

Final Instructions (strict):
1. Output only the complete Python code.
2. Do not print any explanation, description, or English text apart from the code
3. The output format should exactly match the format of the example responses.
Now Begin!!
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ValidLLM Prompt

You are an expert evaluator tasked with comparing multiple LLM-generated outputs to their corre-
sponding ground-truth answers. Each answer may be a JSON object, a string, or a code snippet.
You should validate only the JSON or code portions; ignore any general English descriptions.

Some of the comparisons may be about an API call searching for a product description that users
want to buy. In those cases, consider a match valid if the key attributes are preserved, even if
phrased differently (e.g., "a blue headphone with active noise cancellation" and "blue headphone,
active noise cancellation"). Often, the LLM-generated answer will be more verbose (former in the
example) than the ground-truth answer (latter in the example).

Some important validation rules are:
1. If the ground truth response is in the JSON format, all keys must be present in the LLM-

generated response as well. Extra keys in the JSON mean the result is invalid.
2. If some values within the JSON contain English sentences, check semantic equivalence

between the ground truth and the LLM-generated response, not exact wording (e.g. "The
product is available in the store" and "The store has the product available" are semantically
equivalent).

3. For verbose (in LLM-generated response) vs. concise (in ground-truth response) sentences
when comparing for certain keys in the JSON, ensure keywords from the concise form appear
in the verbose one.

4. For short phrases or code blocks in the response (e.g., "Buy Item", "Search"), check for exact
matches.

5. If the LLM-generated response contains ’null’ for some keys in the response, while the
ground-truth response contains ’None’, treat them as equivalent.

6. Ignore punctuation or numeric formatting (e.g., 10 and 10.00 are equal) when comparing.
7. Ignore quote style (single vs. double quotes) (e.g., "content" and ‘content’ are valid).

Expected Output Format:
```
{

"valid": [0 or 1],
"reason": "The output is correct/incorrect because ..."

}
```

"valid" is a list of 0s and 1s (length of the list = number of comparisons done), where 1 at i’th
position means a correct match for comparison ‘i’, and 0 means a mismatch.

"reason" should give a single combined explanation for why any outputs were incorrect (e.g., extra
keys, wrong structure, mismatched values). Do not provide individual explanations per comparison,
nor include the comparison number. If an LLM-generated response for any comparison includes
an error/exception (e.g., "None: <error>"), include that reason. The objective of the reason field is
to easily identify mistakes and rectify, hence be concise.

Do not output anything except the specified JSON.

Strictly follow the format and rules above. Now validate the given examples.
=====================================
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GPT-4.1 Prompt (used to measure negative hits in §4.1)

You are an expert at checking the correctness of two phrases. You will be given an instruction, and
two phrases extracted from that instruction. One of the phrases is the ground truth answer, while
the other is an answer from our algorithm. The instruction is a user request to buy an item within
a price limit. Both phrases will contain (item name, price limit) tuples.

Your task is to verify whether the extracted phrase from our algorithm matches the item description
in the instruction. If the description contains some important attributes that will be required if it
needs to be searched in an e-commerce website, but those attributes are missing in the extracted
phrase, then it is not a match.

The ground truth may have a different phrasing of the item description, which is fine, but the
phrase from our algorithm should contain all the necessary information about the item.

You will be given the information in the following format:
Instruction: {{instruction}}
Ground Truth Phrase: {{ground_truth}}
Algorithm Phrase: {{algorithm}}

Your task is to answer with "yes" if the algorithm’s response is correct and "no" otherwise. Do not
include any other text.

Data for AgentX

For our experiments with the Cloud-Operations Agent AgentX, we show the distribution of the
incidents that map to each troubleshooting scenario in Figure 7a. We see that the first troubleshooting
scenario (TS-1) covers 69% of the incidents. Hence most incidents’ diagnosis strategy remains
the same since they map to the same troubleshooting strategy document. We plot the number of
repetitions for each incident in Figure 7b. Of the 298 incidents, 253 were unique. We see that 229
incidents never re-occurred, 15 unique incidents recurred twice, while one incident re-occurred 7
times. This shows that using ExactCache cannot produce a high cache hit rate.

TS-1 (69.46%)
TS-2 (24.5%)
TS-3 (5.03%)
TS-4 (0.67%)
TS-5 (0.34%)
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Figure 7: (a) Percentage of incidents that map to each troubleshooting scenario, (b) Number of repetitions for
each incident

Structural Modification to the Data

To complete our experiments in §4.1, we also evaluated on a third dataset with prompt characteristics
different from Param-Only and Param-w-Synonym. We call this variation in the prompt set structural,
where we expressed each user instruction in 10 different ways with structural variations but semanti-
cally identical. For example, "I want to buy Bluetooth headphones, under the price of 150 dollars" is
expressed as "For under 150 dollars, I want a Bluetooth headphone".
As shown in Table 5, GenCache experiences a drop in both cache hit rate and precision when there
are structural changes in the user instructions, compared to the results in Table 1. The reason for this
is that most cached regular expressions fail to generalize when the user instruction structure differs.
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Structural

Method Hit % +ve Hit -ve Hit

ExactCache 0 (± 0.0) N/A N/A
GPTCache [11] 96.28 (± 0.01) 20.72 (± 0.01) 79.28 (± 0.01)
GenCache 4.23 (± 0.21) 72.4 (± 0.12) 27.6 (± 0.12)

Table 5: Baseline comparison of Hit Rate and its correctness when Prompts had Structural changes

ExactCache has 0% hit rate since no prompts were repeated. Thus, we argue that in domains with
structurally diverse prompts, GenCache is less effective (which it is not designed for), and reverting
to ExactCache is preferable (hoping that prompts repeat). While GPTCache’s negative hit rate
continues to be high, it is not 100%, as it occasionally returns correct responses for semantically
similar prompts with structural variations. We observe that when GPTCache shows a positive cache
hit for one user instruction, it tends to return positive hits for all structural variants of that instruction.
However, as the number of user instructions increases, its reliance on approximate nearest neighbor
search for semantic similarity often yields incorrect matches, leading to inaccurate cache hits. Since
GenCache already experiences a high negative hits, we do not experiment GenCache-feedback on
Structural prompt set.

LLM token usage pattern over Time
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(b) Output Tokens
Figure 8: LLM tokens used for cache creation vs LLM tokens avoided due to cache hit for ν = 4
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(a) Input Tokens
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(b) Output Tokens
Figure 9: LLM tokens used for cache creation vs LLM tokens avoided due to cache hit for ν = 15

In Figure 5, we showed at least 35% token savings per request on using GenCache. We now show
how the LLM token usage varies over time. Figure 8 and Figure 9 plots how the number of input and
output tokens varies for ν = 4 and ν = 15 respectively. For all the plots, the ‘blue’ line plots the
token usage (input or output) when LLM was called for cache generation, while the ‘orange’ line
plots the tokens (input or output) that were saved as a result of avoiding LLM call due to cache hit.
We observe that the LLM token usage during cache generation plateaus after initially being high,
while the token savings continue to increase as cache hits become more frequent than cache creations
over time. While the benefits due to cache hit in input token usage surpass that of cache generation
for both ν, the output tokens used for creating the cache with ν = 15 are still higher than the savings
due to cache hit after around 1800 user instructions (even though there is an upward trend).
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